فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    8
تعامل: 
  • بازدید: 

    162
  • دانلود: 

    0
چکیده: 

With growing use of internet and online applications, Network Traffic Classification could be much more useful nowadays, because managing Network services and quality assurance, two key points in Network structure, could be done easily using this kind of Classification. Different methods are used for this task, including port-based Classification, machine learning and some other algorithms that each of them had its own advantages and disadvantages. For eliminating such disadvantages, deep learning methods are new ways for doing this task due to the power and excellent performance they showed. Furthermore, most of the work done in this field are using non-encrypted Traffic or encrypted Traffic in mobile Networks, but as we know, privacy of data is very important these days. In this article, with the use of deep learning neural Network, encrypted Traffic of non-mobile data is being classified. For this purpose, we use the UNB ISCX VPN-non-VPN dataset that includes encrypted and unencrypted Traffic of different applications. Then we design an algorithm based on DNN that could classify these Traffics effectively. Performance of the model was evaluated and 0. 86 accuracy and 0. 78 f1-score showed that model works well compared to other algorithms used in this area.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 162

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    7
تعامل: 
  • بازدید: 

    130
  • دانلود: 

    0
چکیده: 

Users of smartphones in the world has grown significantly, and attacks against these devices have increased. Many protection techniques for android malware detection have been proposed; however, most of them lack the early detection of malware. Hence, there is an intense need before to expand a mechanism to identify malicious programs before utilizing the data. Moreover, achieving high accuracy in detecting Android malware Traffic is another critical problem. This research proposes a deep learning framework using Network Traffic features to detect Android malware. Commonly, machine learning algorithms need data preprocessing, but these preprocessing phases are time-consuming. Deep learning techniques remove the need for data preprocessing, and they perform well on malware detection problems. We extract local features from Network flows by using the one-dimensional CNN and employ LSTM to detect the sequential relationship between the considerable features. We utilize a real-world dataset CICAndMal2017 with Network Traffic features to identify Android malware. Our model achieves the accuracy of 99. 79, 98. 90%, and 97. 29%, respectively, in binary, category, and family Classifications scenarios.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 130

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

نشریه: 

INFORMATION SCIENCES

اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    626
  • شماره: 

    -
  • صفحات: 

    315-338
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    16
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 16

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

MAHDAVI EHSAN | FANIAN ALI | HASSANNEJAD HOMA

اطلاعات دوره: 
  • سال: 

    2018
  • دوره: 

    10
  • شماره: 

    1
  • صفحات: 

    29-43
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    356
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

Traffic Classification plays an important role in many aspects of Network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict Network accesses and so on. Basic methods in this field were using some obvious Traffic features like port number and protocol type to classify the Traffic type. However, recent changes in applications make these features imperfect for such tasks. As a remedy, Network Traffic Classification using machine learning techniques is now evolving. In this article, a new semi-supervised learning is proposed which utilizes clustering algorithms and label propagation techniques. The clustering part is based on graph theory and minimum spanning tree algorithm. In the next level, some pivot data instances are selected for the expert to vote for their classes, and the identified class labels will be used for similar data instances with no labels. In the last part, the decision tree algorithm is used to construct the Classification model. The results show that the proposed method has a precise and accurate performance in Classification of encrypted Traffic for the Network applications. It also provides desirable results for plain un-encrypted Traffic Classification, especially for unbalanced streams of data.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 356

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

نادری شقایق

اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    16
  • شماره: 

    59-60
  • صفحات: 

    264-278
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    27
  • دانلود: 

    0
چکیده: 

طبقه بندی و تحلیل ترافیک، یکی از چالش های بزرگ در حوزه داده کاوی و یادگیری ماشین است که نقش مهمی در تأمین امنیت، تضمین کیفیت و مدیریت شبکه دارد. امروزه حجم زیادی از ترافیک انتقالی در بستر شبکه‏ توسط پروتکلهای ارتباطی امن مانند HTTPS رمز می شوند. ترافیک رمز، امکان نظارت و تشخیص ترافیک مشکوک و مخرب در زیرساخت‏های ارتباطی را (در قبال افزایش امنیت و حریم خصوصی کاربر) کاهش می‏دهد و طبقه بندی آن بدون رمزگشایی ارتباطات شبکه‏ای کار دشواری است، چرا که اطلاعات payload از دست می‏رود و تنها اطلاعات سرآیند که بخشی از آن هم در نسخه های جدید پروتکلهای ارتباطی شبکه (نظیرTLS1.03) رمز می‏شود، قابل دسترس است. از اینرو رویکردهای قدیمی تحلیل ترافیک مانند روشهای مختلف مبتنی بر پورت و Payload کارآمدی خود را از دست داده، و رویکردهای جدید مبتنی بر هوش مصنوعی و یادگیری ماشین در تحلیل ترافیک رمز مورد استفاده قرار می گیرند. در این مقاله پس از بررسی روش های تحلیل ترافیک، چارچوب معماری عملیاتی برای تحلیل و طبقه بندی هوشمند ترافیک طراحی شده است. سپس یک مدل هوشمند با رویکرد شناسایی ترافیک برنامه ها مبتنی بر معماری پیشنهادی ارائه گردیده و با استفاده از روشهای یادگیری ماشین روی پایگاه داده ترافیکی Kaggle141 مورد ارزیابی قرار گرفته است. نتایج بدست آمده نشان می دهد که مدل مبتنی بر جنگل تصادفی، علاوه بر قابلیت تفسیرپذیری بالا در مقایسه با روشهای یادگیری عمیق، توانسته است دقت بالایی در طبقه بندی هوشمند ترافیک (95 درصد) در مقایسه با سایر روشهای یادگیری ماشین ارائه دهد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 27

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

FARTAJ MEHDI | GHOFRANI SEDIGHEH

اطلاعات دوره: 
  • سال: 

    2012
  • دوره: 

    6
  • شماره: 

    4 (23)
  • صفحات: 

    54-62
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    382
  • دانلود: 

    0
چکیده: 

Traffic road sign detection is important to a robotic vehicle that automatically drives on roads. As the colors of most Traffic road signs are blue and red, in this paper, we use Hue- Saturation- Intensity (HSI) color space for color based segmentation at first. Using important geometrical features, the road signs are detected perfectly. After segmentation, it turns to classify every detected road signs. For this purpose, we employ and compare the performance of three classifiers; they are distance to border (DTB), FFT sample of signature, and code matrix. In this work, we use the code matrix as an efficient classifier for the first time. Although the achieved accuracy by code matrix is greater than the two referred classifiers in average, the main advantage is simplicity and so less computational cost.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 382

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    52
  • شماره: 

    4
  • صفحات: 

    269-280
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    139
  • دانلود: 

    12
چکیده: 

One of the obvious reasons for most disorders in Network service provisioning is Network path congestion. Congestion avoidance in today's Networks is too costly and sometimes impossible. With the introduction of SDN, centralizing the equipment's control plane has become possible. This paper presents an enhanced method named ESV-DBRA to avoid congestion in multi-tenant SDN Networks. At first, ESV-DBRA monitors the Traffic load and delay of all Network paths for each tenant individually. Then, by merging the parameters obtained from the monitoring, the Service Level Agreements (SLA), and a novel proposed cost function, it calculates the cost of the Network paths per tenant. As a result, Traffic for each tenant is routed through the path/paths at the lowest possible cost from the tenant's perspective. Next, the bandwidth quotas will be calculated and assigned to the tenants over their optimal routes. Afterward, whenever congestion is likely to occur in a path, ESV-DBRA automatically changes the route or bandwidth of the tenants' Traffic related to this path to avoid congestion. Related algorithms are also proposed.Eventually, simulations show that the proposed method effectively increases bandwidth utilization by 10.76%.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 139

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 12 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Dorrani Z.

اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    37
  • شماره: 

    3
  • صفحات: 

    496-502
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    15
  • دانلود: 

    0
چکیده: 

In this study, we aim to use new deep-learning tools and convolutional neural Networks for Traffic analysis. ResNeXt architecture, one of the most potent architectures and has attracted much attention in various fields, has been proposed to examine the scene, and classify it into three categories: cars, bikes (bicycles/motorcycles), and pedestrians. Previous studies have focused more on one type of Classification and reported only human-facial recognition or vehicle detection. In contrast, the proposed method uses precise architecture to perform the Classification of three classes. The proposed plan has been implemented in several steps: the first stage is to divide the critical objects. In the next step, the characteristics of the obtained objects are extracted to classify the process into three classes. Experiments have been conducted on different and essential datasets such as high-Traffic, low-quality, real-time scenes. Essential evaluation criteria such as accuracy, sensitivity, and specificity show that the performance of the proposed method has improved compared to the methods being compared. The accuracy criterion reached more than 92%, sensitivity about 89%, and specially to 90.25%. The proposed method can be used to implement intelligent cities, public safety, and metropolitan decisions and use the results in urban management, predictive modeling of lost data management, sequential data management, and generalizability.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 15

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

GANDOMI M. | HASSANPOUR H.

اطلاعات دوره: 
  • سال: 

    2017
  • دوره: 

    30
  • شماره: 

    11 (TRANSACTIONS B: Applications)
  • صفحات: 

    1740-1745
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    201
  • دانلود: 

    0
چکیده: 

Fast and accurate Network Traffic identification is becoming essential for Network management, high quality of service control and early detection of Network Traffic abnormalities. Techniques based on statistical features of packet flows have recently become popular for Network Classification due to the limitations of traditional port and payload based methods. In this paper, we propose a method to identify Network Traffics. In this method, for cleaning and preparing data, we perform effective preprocessing approach. Then effective features are extracted using the behavioral analysis of application. Using the effective preprocessing and feature extraction techniques, this method can effectively and accurately identify Network Traffics. For this purpose, two Network Traffic databases namely UNIBS and the collected database on router are analyzed. In order to evaluate the results, the accuracy of Network Traffic identification using proposed method is analyzed using machine learning techniques. Experimental results show that the proposed method obtains an accuracy of 97% in Network Traffic identification.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 201

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1389
  • دوره: 

    5
  • شماره: 

    16
  • صفحات: 

    11-24
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    3581
  • دانلود: 

    753
چکیده: 

نرم افزار Corsim یک نرم افزار شبیه ساز ریزنگر در علم مهندسی ترافیک است که قدرت بالایی در تحلیل و بررسی شبکه های درو ن شهری دارد. در دنیای امروز استفاده از این نوع نرم افزارها یکی از راه حل های اساسی در تحلیل معضلات ترافیکی محسوب می شود. استفاده از این نرم افزار در عین حال که کم هزینه است و نتایج در آن به سرعت به دست می آید، از آشفتگی ترافیکی که اغلب در آزمایش های محلی به وجود می آید جلوگیری می کند. در این تحقیق، تحلیل ظرفیت و بهینه سازی جریان ترافیک در خیابان دستغیب حدفاصل استاد معین و بزرگراه آیت اله سعیدی به وسیله نرم افزارشبیه سازی Corsim، مورد بررسی قرار گرفت. در شبیه سازی این شبکه، اطلاعات فیزیکی و ترافیکی مورد نیاز مربوط به داده های ورودی از اطلاعات فایل GIS سازمان حمل و نقل و ترافیک و برداشت میدانی حاصل شد. سپس شبیه سازی شبکه در حالت کنونی و حالت تغییریافته پیشنهادی در ساعات اوج ترافیکی صبح و عصر انجام گردید. نتایج نشان داد که با یک طرفه کردن خیابان دستغیب حدفاصل خیابان هاشمی و بزرگراه سعیدی (شرق به غرب)، مجموع کل تاخیرات در زمان اوج ترافیک صبح در شبکه 7.3 درصد و در زمان اوج ترافیک عصر 4.9 درصد کاهش می یابد. همچنین زمان کل سفر در شبکه در فاصله 30 دقیقه شبیه سازی در زمان اوج ترافیک صبح از 124 ساعت به 120 ساعت کاهش و سرعت متوسط وسایل نقلیه از 20km/h به 22km/h افزایش یافت. نرم افزار استفاده شده در این تحقیق قبلا با شرایط ترافیکی ایران کالیبره شده است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 3581

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 753 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button